
Richard Heyes Page 1 21/02/2003

HTML_TreeMenu Documentation

Introduction

HTML_TreeMenu is a set of PHP classes to enable the easy creation of
HTML based tree menus. It currently has the ability to create both DHTML,
static and listbox menus. All have the prerequisite of Javascript, however
the Javscript code could be used manually, without the PHP classes.

Authors

HTML_TreeMenu was written by Richard Heyes and Harald Radi.
Contributions/patches have also been received and incorporated from
various people.

Features

• Easy to learn OO based API
• DHTML (traditional) or listbox (<select>) output styles
• Multiple menus per page
• Cross browser DOM compatible DHTML
• Optional branch status persistence using cookies
• Optional static mode without DHTML (still requires Javascript

support)
• Per node icon with alternate “expanded” icon
• Per node CSS class specification
• Per node link targets
• Per node Javascript event specification with custom onExpand,

onCollapse and onToggle events
• Ability to specify from menu creation if a node is expanded by

default, and if it should be made to be visible (ie its parents are
expanded)

Structure Overview

There are five classes in total:

 HTML_TreeMenu The “top level” tree class.
 HTML_TreeNode The node class.
 HTML_TreeMenu_Presentation An abstract base class for the next

 two classes.
 HTML_TreeMenu_DHTML Produces a DHTML style menu.
 HTML_TreeMenu_Listbox Produces a listbox menu.

The HTML_TreeNode class is used to create the structure which is added to
an instance of the HTML_TreeMenu class. This is in turn passed to an
instance of either of the presentation classes (DHTML or Listbox). These
two “presentation” classes have a printMenu() method which can be called
to print the resulting menu.

Richard Heyes Page 2 21/02/2003

Example

See the example.php file for the code. This code makes a simple menu with
two root nodes, each with five nested nodes. The code goes about creating
the initial HTML_TreeMenu object, and then creates the nodes to be added.
The nodes are then added to the menu object, which itself is then passed to
an instance of the HTML_TreeMenu_DHTML object (through the
constructor) and also an HTML_TreeMenu_Listbox object. Then follows
some HTML in which the printMenu() method of each presentation object
is called to show the menus. Note the use of references when assigning the
return of addItem(). Failure to assign by reference will cause problems.

API Reference

HTML_TreeMenu

 Methods
 &addItem(object &$node)
 This method is used to add a HTML_TreeNode to the tree. It
 takes a HTML_TreeNode as its sole argument and returns a
 reference to the node inside the TreeMenu object.

 createFromStructure(array $params)
 This method is an extremely useful one if you already have a
 tree structure defined using one of the supported tree classes.
 It takes said tree structure and returns a tree menu based
 upon it. This takes the work out of traversing your tree and
 creating the structure yourself. The supported tree structures
 are Richard Heyes’ Tree class
 (http://www.phpguru.org/tree.html) and Wolfram Kriesings’
 Tree class available through PEAR http://pear.php.net/Tree.
 The $params argument should be an associative array which
 can consist of the following:

 structure The tree structure
 type The type. Defaults to ‘heyes’.
 Can also be ‘kriesing’.
 nodeOptions Default HTML_TreeNode options
 which are used whilst building the
 menu. In the case of my own Tree
 class, these will be merged with the
 tag data.

 The return value is the HTML_TreeMenu object.

Richard Heyes Page 3 21/02/2003

 createFromXML(mixed $xml)
 This method will create an HTML_TreeMenu object from the
 supplied $xml argument. This argument can either be a string
 containing the XML, or a PEAR::XML_Tree object. If the
 argument is a string, the method will attempt to require() the
 XML_Tree class using standard PEAR techniques (ie:
 require_once(‘XML/Tree.php’)), and then create an
 XML_Tree object based on the string. The method will then
 convert the XML_Tree object to a Tree class using my own
 Tree class (available here: http://phpguru.org/tree.html) so
 this file (Tree.php) MUST be include()ed or require()ed
 before calling this method. If the Tree class cannot be found,
 this method will die(). Once converted, the method will then
 use the createFromStructure() method described above to
 create an HTML_TreeMenu object and return it. For further
 information on using this method and the XML schema see
 the case study below.

HTML_TreeNode

 Methods
 Constructor([array $options [, array $events]])
 The constructor handles setting up the node object based on
 the options supplied. The $options argument should be an
 associative array which can consist of the following:

 text Title of the node, defaults to blank.
 link HREF of the link, defaults to
 blank.
 icon Filename of the icon. Should be in
 the images directory as supplied to
 the presentation object.
 expandedIcon Filename of the icon to be used
 when the node is expanded.
 class CSS class for this node, defaults to
 blank.
 expanded Default expanded status of this
 node. Defaults to false, and has no
 effect on non dynamic
 presentations.
 linkTarget Target for the link. Defaults to
 linkTarget of the presentation
 class.
 isDynamic If this node is dynamic or not.
 Defaults to true.
 ensureVisible If true, this node will be made
 visible regardless of the expanded
 settings and clientside persistence.
 Defaults to false.

 The second argument is an associative array of Javascript
 events and associated handler code. This can also include
 three custom events: onexpand, oncollapse, and ontoggle,
 which should be self explanatory. This argument could also
 be supplied as the events key in the first argument.

Richard Heyes Page 4 21/02/2003

 setOption(string $option, mixed $value)
 Use this method to set any of the options after the node has
 been created. The option names are the same as those in the
 constructor, and take similar values.

 &addItem(object &$node)
 This is similar in every respect to the addItem() method of the
 HTML_TreeMenu class and is used to add child nodes.

HTML_TreeMenu_DHTML

 Methods
 Constructor(&$structure [, array $options [, $isDynamic]])
 This sets up the presentation object with the given structure
 and options. The structure should be an HTML_TreeMenu
 object. The options argument should be an associative array,
 and can consist of the following:

 images The folder to look in for images.
 Defaults to “images”.
 linkTarget Target for any links. Can be set
 here instead of for every node.
 Defaults to “_self”.
 defaultClass Default CSS class to use. Defaults
 to blank.
 usePersistence Whether to use clientside
 persistence or not (with cookies).
 Defaults to true.
 noTopLevelImages Whether to skip the display of the
 first level of branch images if there
 are multiple root nodes. Defaults
 to false.

 The thrid argument $isDynamic can be used to specify
 Whether the entire tree is dynamic or not. Defaults to true.

 printMenu([$options])
 This is a method inherited from the abstract
 HTML_TreeMenu_Presentation class and is used to print the
 menu. The optional argument $options should be an
 associative array which can consist of the same options as the
 $options argument of the constructor.

Richard Heyes Page 5 21/02/2003

HTML_TreeMenu_Listbox

 Methods
 Constructor(&$structure [, array $options])
 This sets up the presentation object with the given structure
 and options. The structure should be an HTML_TreeMenu
 object. The options argument should be an associative array,
 and can consist of the following:

 promoText The text that appears at the top of the
 listbox. Defaults to “Select…”
 indentChar The character used to indent the nodes.
 Defaults to “ ”.
 indentNum How many indentChars to use per
 indentation level.
 linkTarget Target for any links. Can be set here
 instead of for every node. Defaults to
 “_self”.
 submitText Text for the submit button. Defaults to
 “Go”.

 printMenu([$options])
 This is a method inherited from the abstract
 HTML_TreeMenu_Presentation class and is used to print the
 menu. The optional argument $options should be an
 associative array which can consist of the same options as the
 $options argument of the constructor.

Richard Heyes Page 6 21/02/2003

Case study: Creating a tree menu using XML

The HTML_TreeMenu::createFromXML() method is an extremely useful
one if you have a treemenu to maintain and wish to do so in simpler fashion
than updating PHP code every time a change is need. The XML can be kept
in a file and read in to create the menu, with little more than a few lines of
PHP code necessary.

Pros:

• Very easy to maintain
• Little coding required by you
• No loss of control over presentation by way of XML tag attributes

Cons:
• Slower

As a result of:

• Increased amount of included code (Tree class, XML_Tree class,
XML_Tree_Node class, XML_Parser class)

• XML parsing

the decreased speed is significant enough to warrant caching of the
resulting HTML_TreeMenu object, either in a users’ session or perhaps a
file based cache. (PEAR has a couple of candidates – Cache & Cache_Lite).
If you do cache the treeMenu, then it’s entirely concievable that it may end
up being faster than building it in PHP every time, so the speed drawback
becomes a non-issue.

The XML schema you should use consists of two tags, <treemenu> and
<node>. The <treemenu> tag is the root element and there should only ever
be one of these. The <node> tag defines a node in the tree and can be nested
as much as want. The <node> tag can take as attributes any of the options
which can be passed to the HTML_TreeNode constructor (eg. text, link,
icon etc). Some example XML:

<?xml version=”1.0”?>
<treemenu>
 <node text="Node 1" icon="folder.gif" />
 <node text="Node 2" icon="folder.gif" />
 <node text="Node 3" icon="folder.gif" />
 <node text="Node 4" icon="folder.gif">
 <node text="Node 4_1" icon="folder.gif" />
 <node text="Node 4_2" icon="folder.gif" />
 <node text="Node 4_3" icon="folder.gif" />
 <node text="Node 4_4" icon="folder.gif" />
 </node>
 <node text="Node 5" icon="folder.gif" />
</treemenu>

As you can see it’s perfectly OK to use the XML shortcut <node … /> instead
of <node … ></node> if a node has no child nodes. This XML will create a
treeMenu with five root nodes, with the fourth having four child nodes. The
code you would need to use to create the HTML_TreeMenu object is as
follows:

Richard Heyes Page 7 21/02/2003

<?php
 require_once(‘HTML/TreeMenu.php’);
 require_once(‘XML/Tree.php’);
 require_once(‘Tree.php’); // Tree class from phpguru.org

 $xml = file_get_contents(‘treemenu.xml’);
 $treeMenu = HTML_TreeMenu::createFromXML($xml);
?>

You’re then free to use the $treeMenu structure with either of the
presentation classes as normal.

License

The package is distributed under the BSD license. Wishlist fulfilment is
always appreciated of course:

 Richard Heyes http://phpguru.org/wishlist
 Harald Radi http://www.amazon.com/...

